There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({x}^{2} + sqrt(4 + {x}^{4}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x^{2} + sqrt(x^{4} + 4))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x^{2} + sqrt(x^{4} + 4))\right)}{dx}\\=&\frac{(2x + \frac{(4x^{3} + 0)*\frac{1}{2}}{(x^{4} + 4)^{\frac{1}{2}}})}{(x^{2} + sqrt(x^{4} + 4))}\\=&\frac{2x}{(x^{2} + sqrt(x^{4} + 4))} + \frac{2x^{3}}{(x^{2} + sqrt(x^{4} + 4))(x^{4} + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !