There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{t}^{3}{e}^{({t}^{4} - 1)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4t^{3}{e}^{(t^{4} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4t^{3}{e}^{(t^{4} - 1)}\right)}{dt}\\=&4*3t^{2}{e}^{(t^{4} - 1)} + 4t^{3}({e}^{(t^{4} - 1)}((4t^{3} + 0)ln(e) + \frac{(t^{4} - 1)(0)}{(e)}))\\=&12t^{2}{e}^{(t^{4} - 1)} + 16t^{6}{e}^{(t^{4} - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !