Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(ax)}f(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = fx{e}^{(ax)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( fx{e}^{(ax)}\right)}{dx}\\=&f{e}^{(ax)} + fx({e}^{(ax)}((a)ln(e) + \frac{(ax)(0)}{(e)}))\\=&f{e}^{(ax)} + afx{e}^{(ax)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( f{e}^{(ax)} + afx{e}^{(ax)}\right)}{dx}\\=&f({e}^{(ax)}((a)ln(e) + \frac{(ax)(0)}{(e)})) + af{e}^{(ax)} + afx({e}^{(ax)}((a)ln(e) + \frac{(ax)(0)}{(e)}))\\=&2af{e}^{(ax)} + a^{2}fx{e}^{(ax)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return