Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x - tan(2cos(x)) + sin(3sin(2x - 1)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x - tan(2cos(x)) + sin(3sin(2x - 1)))\right)}{dx}\\=&cos(x - tan(2cos(x)) + sin(3sin(2x - 1)))(1 - sec^{2}(2cos(x))(2*-sin(x)) + cos(3sin(2x - 1))*3cos(2x - 1)(2 + 0))\\=&6cos(x - tan(2cos(x)) + sin(3sin(2x - 1)))cos(2x - 1)cos(3sin(2x - 1)) + 2sin(x)cos(x - tan(2cos(x)) + sin(3sin(2x - 1)))sec^{2}(2cos(x)) + cos(x - tan(2cos(x)) + sin(3sin(2x - 1)))\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return