Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{2{(xlg(x))}^{x}}{(3 + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2(xlg(x))^{x}}{(x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2(xlg(x))^{x}}{(x + 3)}\right)}{dx}\\=&2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)}\\=&\frac{2(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)} + \frac{2(xlg(x))^{x}}{(x + 3)} - \frac{2(xlg(x))^{x}}{(x + 3)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)} + \frac{2(xlg(x))^{x}}{(x + 3)} - \frac{2(xlg(x))^{x}}{(x + 3)^{2}}\right)}{dx}\\=&\frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x)) + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)} + \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)} - 2(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x} - \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}}\\=&\frac{-4(xlg(x))^{x}}{(x + 3)^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}}{(x + 3)ln^{2}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}} + \frac{2(xlg(x))^{x}}{(x + 3)xln{10}lg(x)} + \frac{2(xlg(x))^{x}}{(x + 3)x} + \frac{2(xlg(x))^{x}}{(x + 3)} + \frac{4(xlg(x))^{x}}{(x + 3)^{3}} - \frac{4(xlg(x))^{x}}{(x + 3)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4(xlg(x))^{x}}{(x + 3)^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}}{(x + 3)ln^{2}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}} + \frac{2(xlg(x))^{x}}{(x + 3)xln{10}lg(x)} + \frac{2(xlg(x))^{x}}{(x + 3)x} + \frac{2(xlg(x))^{x}}{(x + 3)} + \frac{4(xlg(x))^{x}}{(x + 3)^{3}} - \frac{4(xlg(x))^{x}}{(x + 3)^{2}}\right)}{dx}\\=&\frac{-4(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{ln{10}lg(x)} - \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}ln{10}lg(x)} - \frac{4(xlg(x))^{x}*-0}{(x + 3)^{2}ln^{2}{10}lg(x)} - \frac{4(xlg(x))^{x}*-1}{(x + 3)^{2}ln{10}lg^{2}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln{10}lg(x)} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{4(xlg(x))^{x}*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln^{2}{10}lg^{2}(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}*-2*0}{(x + 3)ln^{3}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}*-2}{(x + 3)ln^{2}{10}lg^{3}(x)ln{10}(x)} - \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{xln^{2}{10}lg^{2}(x)} - \frac{2*-(xlg(x))^{x}}{(x + 3)x^{2}ln^{2}{10}lg^{2}(x)} - \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}*-2*0}{(x + 3)xln^{3}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}*-2}{(x + 3)xln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}*-0ln(xlg(x))}{(x + 3)ln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)ln{10}(xlg(x))lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln^{2}(xlg(x)) + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{2}(xlg(x))}{(x + 3)} + \frac{2(xlg(x))^{x}*2ln(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} + 4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x)) + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)} + \frac{4(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} - 4(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}ln(xlg(x)) - \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)^{2}} - \frac{4(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{2}(xlg(x))} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{xln{10}lg(x)} + \frac{2*-(xlg(x))^{x}}{(x + 3)x^{2}ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)xln{10}lg(x)} + \frac{2(xlg(x))^{x}*-0}{(x + 3)xln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}*-1}{(x + 3)xln{10}lg^{2}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{x} + \frac{2*-(xlg(x))^{x}}{(x + 3)x^{2}} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)x} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)} + 4(\frac{-3(1 + 0)}{(x + 3)^{4}})(xlg(x))^{x} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{3}} - 4(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x} - \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}}\\=&\frac{12(xlg(x))^{x}}{(x + 3)^{3}ln{10}lg(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{12(xlg(x))^{x}}{(x + 3)^{2}ln{10}lg(x)} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)^{2}xln^{2}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{12(xlg(x))^{x}}{(x + 3)xln{10}lg(x)} - \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}}{(x + 3)ln^{3}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}}{(x + 3)xln^{3}{10}lg^{3}(x)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)} - \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{2}} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} - \frac{2(xlg(x))^{x}}{(x + 3)x^{2}ln{10}lg(x)} - \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}xln{10}lg(x)} + \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{3}} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)x} + \frac{6(xlg(x))^{x}}{(x + 3)x} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}x} - \frac{2(xlg(x))^{x}}{(x + 3)x^{2}} + \frac{2(xlg(x))^{x}}{(x + 3)} - \frac{12(xlg(x))^{x}}{(x + 3)^{4}} + \frac{12(xlg(x))^{x}}{(x + 3)^{3}} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{12(xlg(x))^{x}}{(x + 3)^{3}ln{10}lg(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{12(xlg(x))^{x}}{(x + 3)^{2}ln{10}lg(x)} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)^{2}xln^{2}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{12(xlg(x))^{x}}{(x + 3)xln{10}lg(x)} - \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}}{(x + 3)ln^{3}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}}{(x + 3)xln^{3}{10}lg^{3}(x)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)} - \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{2}} + \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} - \frac{2(xlg(x))^{x}}{(x + 3)x^{2}ln{10}lg(x)} - \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}xln{10}lg(x)} + \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{3}} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)x} + \frac{6(xlg(x))^{x}}{(x + 3)x} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}x} - \frac{2(xlg(x))^{x}}{(x + 3)x^{2}} + \frac{2(xlg(x))^{x}}{(x + 3)} - \frac{12(xlg(x))^{x}}{(x + 3)^{4}} + \frac{12(xlg(x))^{x}}{(x + 3)^{3}} - \frac{6(xlg(x))^{x}}{(x + 3)^{2}}\right)}{dx}\\=&\frac{12(\frac{-3(1 + 0)}{(x + 3)^{4}})(xlg(x))^{x}}{ln{10}lg(x)} + \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{3}ln{10}lg(x)} + \frac{12(xlg(x))^{x}*-0}{(x + 3)^{3}ln^{2}{10}lg(x)} + \frac{12(xlg(x))^{x}*-1}{(x + 3)^{3}ln{10}lg^{2}(x)ln{10}(x)} - \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{2}(xlg(x))ln{10}lg(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))*-0}{(x + 3)^{2}ln^{2}{10}lg(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)^{2}ln{10}lg^{2}(x)ln{10}(x)} - \frac{12(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{ln{10}lg(x)} - \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}ln{10}lg(x)} - \frac{12(xlg(x))^{x}*-0}{(x + 3)^{2}ln^{2}{10}lg(x)} - \frac{12(xlg(x))^{x}*-1}{(x + 3)^{2}ln{10}lg^{2}(x)ln{10}(x)} - \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{ln^{2}{10}lg^{2}(x)} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} - \frac{6(xlg(x))^{x}*-2*0}{(x + 3)^{2}ln^{3}{10}lg^{2}(x)} - \frac{6(xlg(x))^{x}*-2}{(x + 3)^{2}ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{xln^{2}{10}lg^{2}(x)} + \frac{6*-(xlg(x))^{x}}{(x + 3)^{2}x^{2}ln^{2}{10}lg^{2}(x)} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}xln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}*-2*0}{(x + 3)^{2}xln^{3}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}*-2}{(x + 3)^{2}xln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln^{2}(xlg(x))}{ln{10}lg(x)} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{4(xlg(x))^{x}*2ln(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))ln{10}lg(x)} + \frac{4(xlg(x))^{x}ln^{2}(xlg(x))*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{4(xlg(x))^{x}ln^{2}(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln^{2}{10}lg^{2}(x)} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}*-2*0ln(xlg(x))}{(x + 3)ln^{3}{10}lg^{2}(x)} + \frac{4(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)ln^{2}{10}(xlg(x))lg^{2}(x)} + \frac{4(xlg(x))^{x}ln(xlg(x))*-2}{(x + 3)ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{12(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{xln{10}lg(x)} + \frac{12*-(xlg(x))^{x}}{(x + 3)x^{2}ln{10}lg(x)} + \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)xln{10}lg(x)} + \frac{12(xlg(x))^{x}*-0}{(x + 3)xln^{2}{10}lg(x)} + \frac{12(xlg(x))^{x}*-1}{(x + 3)xln{10}lg^{2}(x)ln{10}(x)} - \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{xln^{2}{10}lg^{2}(x)} - \frac{2*-(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln^{2}{10}lg^{2}(x)} - \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}*-2*0ln(xlg(x))}{(x + 3)xln^{3}{10}lg^{2}(x)} - \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)xln^{2}{10}(xlg(x))lg^{2}(x)} - \frac{2(xlg(x))^{x}ln(xlg(x))*-2}{(x + 3)xln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln{10}lg(x)} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}*-0}{(x + 3)ln^{2}{10}lg(x)} + \frac{6(xlg(x))^{x}*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}*-0ln(xlg(x))}{(x + 3)ln^{2}{10}lg(x)} + \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)ln{10}(xlg(x))lg(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{ln^{2}{10}lg^{2}(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))ln^{2}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-2*0}{(x + 3)ln^{3}{10}lg^{2}(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-2}{(x + 3)ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln^{2}{10}lg^{2}(x)} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}*-2*0}{(x + 3)ln^{3}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}*-2}{(x + 3)ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{ln^{3}{10}lg^{3}(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)ln^{3}{10}lg^{3}(x)} + \frac{2(xlg(x))^{x}*-3*0}{(x + 3)ln^{4}{10}lg^{3}(x)} + \frac{2(xlg(x))^{x}*-3}{(x + 3)ln^{3}{10}lg^{4}(x)ln{10}(x)} - \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{xln^{3}{10}lg^{3}(x)} - \frac{6*-(xlg(x))^{x}}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)xln^{3}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}*-3*0}{(x + 3)xln^{4}{10}lg^{3}(x)} - \frac{6(xlg(x))^{x}*-3}{(x + 3)xln^{3}{10}lg^{4}(x)ln{10}(x)} - \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{xln^{2}{10}lg^{2}(x)} - \frac{4*-(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln^{2}{10}lg^{2}(x)} - \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{4(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)x(xlg(x))ln^{2}{10}lg^{2}(x)} - \frac{4(xlg(x))^{x}ln(xlg(x))*-2*0}{(x + 3)xln^{3}{10}lg^{2}(x)} - \frac{4(xlg(x))^{x}ln(xlg(x))*-2}{(x + 3)xln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{x^{2}ln^{3}{10}lg^{3}(x)} + \frac{4*-2(xlg(x))^{x}}{(x + 3)x^{3}ln^{3}{10}lg^{3}(x)} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} + \frac{4(xlg(x))^{x}*-3*0}{(x + 3)x^{2}ln^{4}{10}lg^{3}(x)} + \frac{4(xlg(x))^{x}*-3}{(x + 3)x^{2}ln^{3}{10}lg^{4}(x)ln{10}(x)} - \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}ln(xlg(x))}{ln{10}lg(x)} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{6(xlg(x))^{x}*-0ln(xlg(x))}{(x + 3)^{2}ln^{2}{10}lg(x)} - \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{2}ln{10}(xlg(x))lg(x)} - \frac{6(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)^{2}ln{10}lg^{2}(x)ln{10}(x)} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln^{2}(xlg(x))}{ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}*-0ln^{2}(xlg(x))}{(x + 3)ln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}*2ln(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)ln{10}(xlg(x))lg(x)} + \frac{2(xlg(x))^{x}ln^{2}(xlg(x))*-1}{(x + 3)ln{10}lg^{2}(x)ln{10}(x)} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln^{3}(xlg(x)) + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{3}(xlg(x))}{(x + 3)} + \frac{2(xlg(x))^{x}*3ln^{2}(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} + 6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln^{2}(xlg(x)) + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{2}(xlg(x))}{(x + 3)} + \frac{6(xlg(x))^{x}*2ln(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} - 6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}ln^{2}(xlg(x)) - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln^{2}(xlg(x))}{(x + 3)^{2}} - \frac{6(xlg(x))^{x}*2ln(xlg(x))(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{2}(xlg(x))} + \frac{4(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{xln{10}lg(x)} + \frac{4*-(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln{10}lg(x)} + \frac{4((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)xln{10}lg(x)} + \frac{4(xlg(x))^{x}*-0ln(xlg(x))}{(x + 3)xln^{2}{10}lg(x)} + \frac{4(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)xln{10}(xlg(x))lg(x)} + \frac{4(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)xln{10}lg^{2}(x)ln{10}(x)} - \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{x^{2}ln{10}lg(x)} - \frac{2*-2(xlg(x))^{x}}{(x + 3)x^{3}ln{10}lg(x)} - \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)x^{2}ln{10}lg(x)} - \frac{2(xlg(x))^{x}*-0}{(x + 3)x^{2}ln^{2}{10}lg(x)} - \frac{2(xlg(x))^{x}*-1}{(x + 3)x^{2}ln{10}lg^{2}(x)ln{10}(x)} - 12(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}ln(xlg(x)) - \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)^{2}} - \frac{12(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{2}(xlg(x))} + 6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x)) + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)} + \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)(xlg(x))} - \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{xln{10}lg(x)} - \frac{6*-(xlg(x))^{x}}{(x + 3)^{2}x^{2}ln{10}lg(x)} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}xln{10}lg(x)} - \frac{6(xlg(x))^{x}*-0}{(x + 3)^{2}xln^{2}{10}lg(x)} - \frac{6(xlg(x))^{x}*-1}{(x + 3)^{2}xln{10}lg^{2}(x)ln{10}(x)} + 12(\frac{-3(1 + 0)}{(x + 3)^{4}})(xlg(x))^{x}ln(xlg(x)) + \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)^{3}} + \frac{12(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)^{3}(xlg(x))} + \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{xln{10}lg(x)} + \frac{2*-(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln{10}lg(x)} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)xln{10}lg(x)} + \frac{2(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)x(xlg(x))ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-0}{(x + 3)xln^{2}{10}lg(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))*-1}{(x + 3)xln{10}lg^{2}(x)ln{10}(x)} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}ln(xlg(x))}{x} + \frac{6*-(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))ln(xlg(x))}{(x + 3)x} + \frac{6(xlg(x))^{x}(lg(x) + \frac{x}{ln{10}(x)})}{(x + 3)x(xlg(x))} + \frac{6(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{x} + \frac{6*-(xlg(x))^{x}}{(x + 3)x^{2}} + \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)x} - \frac{6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x}}{x} - \frac{6*-(xlg(x))^{x}}{(x + 3)^{2}x^{2}} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}x} - \frac{2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x}}{x^{2}} - \frac{2*-2(xlg(x))^{x}}{(x + 3)x^{3}} - \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)x^{2}} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})(xlg(x))^{x} + \frac{2((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)} - 12(\frac{-4(1 + 0)}{(x + 3)^{5}})(xlg(x))^{x} - \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{4}} + 12(\frac{-3(1 + 0)}{(x + 3)^{4}})(xlg(x))^{x} + \frac{12((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{3}} - 6(\frac{-2(1 + 0)}{(x + 3)^{3}})(xlg(x))^{x} - \frac{6((xlg(x))^{x}((1)ln(xlg(x)) + \frac{(x)(lg(x) + \frac{x}{ln{10}(x)})}{(xlg(x))}))}{(x + 3)^{2}}\\=&\frac{-48(xlg(x))^{x}}{(x + 3)^{4}ln{10}lg(x)} + \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{3}ln{10}lg(x)} + \frac{48(xlg(x))^{x}}{(x + 3)^{3}ln{10}lg(x)} + \frac{24(xlg(x))^{x}}{(x + 3)^{3}ln^{2}{10}lg^{2}(x)} + \frac{26(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} - \frac{16(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{16(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} - \frac{48(xlg(x))^{x}}{(x + 3)^{2}xln{10}lg(x)} + \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}xln^{2}{10}lg^{2}(x)} - \frac{24(xlg(x))^{x}}{(x + 3)^{2}ln{10}lg(x)} - \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} - \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} - \frac{24(xlg(x))^{x}}{(x + 3)^{2}ln^{2}{10}lg^{2}(x)} - \frac{8(xlg(x))^{x}}{(x + 3)^{2}ln^{3}{10}lg^{3}(x)} + \frac{24(xlg(x))^{x}}{(x + 3)^{2}xln^{3}{10}lg^{3}(x)} - \frac{24(xlg(x))^{x}}{(x + 3)^{3}xln^{2}{10}lg^{2}(x)} + \frac{16(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}xln^{2}{10}lg^{2}(x)} + \frac{36(xlg(x))^{x}}{(x + 3)xln{10}lg(x)} - \frac{16(xlg(x))^{x}}{(x + 3)^{2}x^{2}ln^{3}{10}lg^{3}(x)} + \frac{6(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{16(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{10(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{4(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{16(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{24(xlg(x))^{x}}{(x + 3)xln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{3}{10}lg^{3}(x)} - \frac{12(xlg(x))^{x}}{(x + 3)xln^{3}{10}lg^{3}(x)} - \frac{14(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{3}{10}lg^{3}(x)} - \frac{14(xlg(x))^{x}}{(x + 3)x^{2}ln^{2}{10}lg^{2}(x)} - \frac{8(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{10(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{2}{10}lg^{2}(x)} - \frac{10(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln^{3}{10}lg^{3}(x)} + \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} + \frac{8(xlg(x))^{x}}{(x + 3)ln{10}lg(x)} + \frac{12(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{8(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{12(xlg(x))^{x}}{(x + 3)ln^{2}{10}lg^{2}(x)} + \frac{8(xlg(x))^{x}}{(x + 3)ln^{3}{10}lg^{3}(x)} + \frac{2(xlg(x))^{x}ln(xlg(x))}{(x + 3)ln^{3}{10}lg^{3}(x)} + \frac{2(xlg(x))^{x}}{(x + 3)ln^{4}{10}lg^{4}(x)} - \frac{12(xlg(x))^{x}}{(x + 3)xln^{4}{10}lg^{4}(x)} + \frac{22(xlg(x))^{x}ln(xlg(x))}{(x + 3)xln{10}lg(x)} + \frac{22(xlg(x))^{x}}{(x + 3)x^{2}ln^{4}{10}lg^{4}(x)} + \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} - \frac{8(xlg(x))^{x}}{(x + 3)x^{3}ln^{3}{10}lg^{3}(x)} + \frac{4(xlg(x))^{x}}{(x + 3)x^{2}ln^{3}{10}lg^{3}(x)} - \frac{12(xlg(x))^{x}}{(x + 3)x^{3}ln^{4}{10}lg^{4}(x)} + \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{3}ln{10}lg(x)} - \frac{8(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)ln{10}lg(x)} + \frac{2(xlg(x))^{x}ln^{4}(xlg(x))}{(x + 3)} + \frac{8(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)} - \frac{8(xlg(x))^{x}ln^{3}(xlg(x))}{(x + 3)^{2}} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)xln{10}lg(x)} - \frac{24(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{2}} + \frac{12(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln{10}lg(x)} + \frac{4(xlg(x))^{x}}{(x + 3)x^{3}ln{10}lg(x)} + \frac{24(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)^{3}} - \frac{16(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}xln{10}lg(x)} + \frac{8(xlg(x))^{x}}{(x + 3)^{2}x^{2}ln{10}lg(x)} + \frac{2(xlg(x))^{x}}{(x + 3)x^{3}ln^{2}{10}lg^{2}(x)} + \frac{6(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)xln{10}lg(x)} - \frac{4(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}ln{10}lg(x)} - \frac{4(xlg(x))^{x}}{(x + 3)x^{2}ln{10}lg(x)} + \frac{24(xlg(x))^{x}}{(x + 3)^{3}xln{10}lg(x)} + \frac{48(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{3}} - \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}} - \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}xln{10}lg(x)} + \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)} + \frac{12(xlg(x))^{x}ln^{2}(xlg(x))}{(x + 3)x} + \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)x} - \frac{24(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{2}x} - \frac{8(xlg(x))^{x}ln(xlg(x))}{(x + 3)x^{2}} - \frac{48(xlg(x))^{x}ln(xlg(x))}{(x + 3)^{4}} + \frac{24(xlg(x))^{x}}{(x + 3)^{3}x} - \frac{24(xlg(x))^{x}}{(x + 3)^{2}x} + \frac{12(xlg(x))^{x}}{(x + 3)x} + \frac{8(xlg(x))^{x}}{(x + 3)^{2}x^{2}} + \frac{4(xlg(x))^{x}}{(x + 3)x^{3}} - \frac{2(xlg(x))^{x}}{(x + 3)x^{2}} + \frac{2(xlg(x))^{x}}{(x + 3)} + \frac{48(xlg(x))^{x}}{(x + 3)^{5}} - \frac{48(xlg(x))^{x}}{(x + 3)^{4}} + \frac{24(xlg(x))^{x}}{(x + 3)^{3}} - \frac{8(xlg(x))^{x}}{(x + 3)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return