There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan({x}^{\frac{1}{2}}) + 2 - {x}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(x^{\frac{1}{2}}) - x^{\frac{1}{2}} + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(x^{\frac{1}{2}}) - x^{\frac{1}{2}} + 2\right)}{dx}\\=&(\frac{(\frac{\frac{1}{2}}{x^{\frac{1}{2}}})}{(1 + (x^{\frac{1}{2}})^{2})}) - \frac{\frac{1}{2}}{x^{\frac{1}{2}}} + 0\\=&\frac{1}{2(x + 1)x^{\frac{1}{2}}} - \frac{1}{2x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !