There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(cos(2x) + 3)}{sin(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(2x)}{sin(2x)} + \frac{3}{sin(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(2x)}{sin(2x)} + \frac{3}{sin(2x)}\right)}{dx}\\=&\frac{-cos(2x)*2cos(2x)}{sin^{2}(2x)} + \frac{-sin(2x)*2}{sin(2x)} + \frac{3*-cos(2x)*2}{sin^{2}(2x)}\\=&\frac{-2cos^{2}(2x)}{sin^{2}(2x)} - \frac{6cos(2x)}{sin^{2}(2x)} - 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !