There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{{x}^{4}ln(0)}{24}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{24}x^{4}ln(0)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{24}x^{4}ln(0)\right)}{dx}\\=&\frac{1}{24}*4x^{3}ln(0) + \frac{\frac{1}{24}x^{4}*0}{(0)}\\=&\frac{x^{3}ln(0)}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{3}ln(0)}{6}\right)}{dx}\\=&\frac{3x^{2}ln(0)}{6} + \frac{x^{3}*0}{6(0)}\\=&\frac{x^{2}ln(0)}{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{2}ln(0)}{2}\right)}{dx}\\=&\frac{2xln(0)}{2} + \frac{x^{2}*0}{2(0)}\\=&xln(0)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( xln(0)\right)}{dx}\\=&ln(0) + \frac{x*0}{(0)}\\=&ln(0)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !