Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{{x}^{4}sqrt(-1)}{24}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{24}x^{4}sqrt(-1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{24}x^{4}sqrt(-1)\right)}{dx}\\=&\frac{1}{24}*4x^{3}sqrt(-1) + \frac{1}{24}x^{4}*0*\frac{1}{2}*-1^{\frac{1}{2}}\\=&\frac{x^{3}sqrt(-1)}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{3}sqrt(-1)}{6}\right)}{dx}\\=&\frac{3x^{2}sqrt(-1)}{6} + \frac{x^{3}*0*\frac{1}{2}*-1^{\frac{1}{2}}}{6}\\=&\frac{x^{2}sqrt(-1)}{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{2}sqrt(-1)}{2}\right)}{dx}\\=&\frac{2xsqrt(-1)}{2} + \frac{x^{2}*0*\frac{1}{2}*-1^{\frac{1}{2}}}{2}\\=&xsqrt(-1)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( xsqrt(-1)\right)}{dx}\\=&sqrt(-1) + x*0*\frac{1}{2}*-1^{\frac{1}{2}}\\=&sqrt(-1)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return