There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sqrt(0)}^{2}sin(sqrt({sqrt(0)}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(sqrt(sqrt(0)^{2}))sqrt(0)^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(sqrt(sqrt(0)^{2}))sqrt(0)^{2}\right)}{dx}\\=&\frac{cos(sqrt(sqrt(0)^{2}))*2(0)^{\frac{1}{2}}*0*\frac{1}{2}*0^{\frac{1}{2}}*\frac{1}{2}sqrt(0)^{2}}{(sqrt(0)^{2})^{\frac{1}{2}}} + sin(sqrt(sqrt(0)^{2}))*2(0)^{\frac{1}{2}}*0*\frac{1}{2}*0^{\frac{1}{2}}\\=&\frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !