Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ x{e^{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{{x}*{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{{x}*{3}}\right)}{dx}\\=&e^{{x}*{3}} + x*3e^{{x}*{2}}e^{x}\\=&e^{{x}*{3}} + 3xe^{{x}*{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{{x}*{3}} + 3xe^{{x}*{3}}\right)}{dx}\\=&3e^{{x}*{2}}e^{x} + 3e^{{x}*{3}} + 3x*3e^{{x}*{2}}e^{x}\\=&6e^{{x}*{3}} + 9xe^{{x}*{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6e^{{x}*{3}} + 9xe^{{x}*{3}}\right)}{dx}\\=&6*3e^{{x}*{2}}e^{x} + 9e^{{x}*{3}} + 9x*3e^{{x}*{2}}e^{x}\\=&27e^{{x}*{3}} + 27xe^{{x}*{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 27e^{{x}*{3}} + 27xe^{{x}*{3}}\right)}{dx}\\=&27*3e^{{x}*{2}}e^{x} + 27e^{{x}*{3}} + 27x*3e^{{x}*{2}}e^{x}\\=&108e^{{x}*{3}} + 81xe^{{x}*{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return