There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + log_{3}^{9 - x})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2xlog_{3}^{-x + 9} + x^{2} + {\left(log_{3}^{-x + 9}\right)}^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2xlog_{3}^{-x + 9} + x^{2} + {\left(log_{3}^{-x + 9}\right)}^{2}\right)}{dx}\\=&2log_{3}^{-x + 9} + 2x(\frac{(\frac{(-1 + 0)}{(-x + 9)} - \frac{(0)log_{3}^{-x + 9}}{(3)})}{(ln(3))}) + 2x + (\frac{2log_{3}^{-x + 9}(\frac{(-1 + 0)}{(-x + 9)} - \frac{(0)log_{3}^{-x + 9}}{(3)})}{(ln(3))})\\=&2log_{3}^{-x + 9} - \frac{2x}{(-x + 9)ln(3)} + 2x - \frac{2log_{3}^{-x + 9}}{(-x + 9)ln(3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !