There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(\frac{1}{(-1 + x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{(x - 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{(x - 1)})\right)}{dx}\\=&\frac{(\frac{-(1 + 0)}{(x - 1)^{2}})}{(\frac{1}{(x - 1)})}\\=&\frac{-1}{(x - 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(x - 1)}\right)}{dx}\\=&-(\frac{-(1 + 0)}{(x - 1)^{2}})\\=&\frac{1}{(x - 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x - 1)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x - 1)^{3}})\\=&\frac{-2}{(x - 1)^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{(x - 1)^{3}}\right)}{dx}\\=&-2(\frac{-3(1 + 0)}{(x - 1)^{4}})\\=&\frac{6}{(x - 1)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !