There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2} - 4(sqrt(3))x + sqrt(-{x}^{2} - 4(sqrt(3))x + 13) + 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 4xsqrt(3) + x^{2} + sqrt(-4xsqrt(3) - x^{2} + 13) + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 4xsqrt(3) + x^{2} + sqrt(-4xsqrt(3) - x^{2} + 13) + 2\right)}{dx}\\=& - 4sqrt(3) - 4x*0*\frac{1}{2}*3^{\frac{1}{2}} + 2x + \frac{(-4sqrt(3) - 4x*0*\frac{1}{2}*3^{\frac{1}{2}} - 2x + 0)*\frac{1}{2}}{(-4xsqrt(3) - x^{2} + 13)^{\frac{1}{2}}} + 0\\=& - 4sqrt(3) + 2x - \frac{2sqrt(3)}{(-4xsqrt(3) - x^{2} + 13)^{\frac{1}{2}}} - \frac{x}{(-4xsqrt(3) - x^{2} + 13)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !