There are 1 questions in this calculation: for each question, the 4 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(2{t}^{2} + 15t + 7)}^{2}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4t^{4} + 60t^{3} + 253t^{2} + 210t + 49\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4t^{4} + 60t^{3} + 253t^{2} + 210t + 49\right)}{dt}\\=&4*4t^{3} + 60*3t^{2} + 253*2t + 210 + 0\\=&16t^{3} + 180t^{2} + 506t + 210\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16t^{3} + 180t^{2} + 506t + 210\right)}{dt}\\=&16*3t^{2} + 180*2t + 506 + 0\\=&48t^{2} + 360t + 506\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 48t^{2} + 360t + 506\right)}{dt}\\=&48*2t + 360 + 0\\=&96t + 360\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 96t + 360\right)}{dt}\\=&96 + 0\\=&96\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !