Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a{x}^{2} + b{t}^{2})}{(2x + 2t)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax^{2}}{(2x + 2t)} + \frac{bt^{2}}{(2x + 2t)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax^{2}}{(2x + 2t)} + \frac{bt^{2}}{(2x + 2t)}\right)}{dx}\\=&(\frac{-(2 + 0)}{(2x + 2t)^{2}})ax^{2} + \frac{a*2x}{(2x + 2t)} + (\frac{-(2 + 0)}{(2x + 2t)^{2}})bt^{2} + 0\\=&\frac{-2ax^{2}}{(2x + 2t)^{2}} + \frac{2ax}{(2x + 2t)} - \frac{2bt^{2}}{(2x + 2t)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return