There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 28.779{(1 - e^{-0.049x})}^{1.447}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 28.779(-e^{-0.049x} + 1)^{\frac{1447}{1000}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 28.779(-e^{-0.049x} + 1)^{\frac{1447}{1000}}\right)}{dx}\\=&28.779(1.447(-e^{-0.049x} + 1)^{\frac{447}{1000}}(-e^{-0.049x}*-0.049 + 0))\\=&2.040517437(-e^{-0.049x} + 1)^{\frac{447}{1000}}e^{-0.049x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2.040517437(-e^{-0.049x} + 1)^{\frac{447}{1000}}e^{-0.049x}\right)}{dx}\\=&2.040517437(\frac{0.447(-e^{-0.049x}*-0.049 + 0)}{(-e^{-0.049x} + 1)^{\frac{553}{1000}}})e^{-0.049x} + 2.040517437(-e^{-0.049x} + 1)^{\frac{447}{1000}}e^{-0.049x}*-0.049\\=&\frac{0.044693453422611e^{-0.049x}e^{-0.049x}}{(-e^{-0.049x} + 1)^{\frac{553}{1000}}} - 0.099985354413(-e^{-0.049x} + 1)^{\frac{447}{1000}}e^{-0.049x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !