There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({X}^{2} + 2)}{(9{x}^{2} + 27x - \frac{104}{5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{X^{2}}{(9x^{2} + 27x - \frac{104}{5})} + \frac{2}{(9x^{2} + 27x - \frac{104}{5})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{X^{2}}{(9x^{2} + 27x - \frac{104}{5})} + \frac{2}{(9x^{2} + 27x - \frac{104}{5})}\right)}{dx}\\=&(\frac{-(9*2x + 27 + 0)}{(9x^{2} + 27x - \frac{104}{5})^{2}})X^{2} + 0 + 2(\frac{-(9*2x + 27 + 0)}{(9x^{2} + 27x - \frac{104}{5})^{2}})\\=&\frac{-18X^{2}x}{(9x^{2} + 27x - \frac{104}{5})^{2}} - \frac{27X^{2}}{(9x^{2} + 27x - \frac{104}{5})^{2}} - \frac{36x}{(9x^{2} + 27x - \frac{104}{5})^{2}} - \frac{54}{(9x^{2} + 27x - \frac{104}{5})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !