There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 30.688(1 - {e^{-0.049x}}^{1.479})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 30.688e^{{-0.049x}*{\frac{1479}{1000}}} + 30.688\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 30.688e^{{-0.049x}*{\frac{1479}{1000}}} + 30.688\right)}{dx}\\=& - 30.688*1.479e^{{-0.049x}*{\frac{479}{1000}}}e^{-0.049x}*-0.049 + 0\\=& - -2.223990048e^{{-0.049x}*{\frac{479}{1000}}}e^{-0.049x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !