Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({2}^{x} - 1 - x){\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{2}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{2}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2 * {2}^{x}}{x^{3}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x^{2}} - \frac{-1}{x^{2}} - \frac{-2}{x^{3}}\\=&\frac{{2}^{x}ln(2)}{x^{2}} - \frac{2 * {2}^{x}}{x^{3}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{2}^{x}ln(2)}{x^{2}} - \frac{2 * {2}^{x}}{x^{3}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{-2 * {2}^{x}ln(2)}{x^{3}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)}{x^{2}} + \frac{{2}^{x}*0}{x^{2}(2)} - \frac{2*-3 * {2}^{x}}{x^{4}} - \frac{2({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x^{3}} + \frac{-2}{x^{3}} + \frac{2*-3}{x^{4}}\\=&\frac{-4 * {2}^{x}ln(2)}{x^{3}} + \frac{{2}^{x}ln^{2}(2)}{x^{2}} + \frac{6 * {2}^{x}}{x^{4}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4 * {2}^{x}ln(2)}{x^{3}} + \frac{{2}^{x}ln^{2}(2)}{x^{2}} + \frac{6 * {2}^{x}}{x^{4}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\right)}{dx}\\=&\frac{-4*-3 * {2}^{x}ln(2)}{x^{4}} - \frac{4({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)}{x^{3}} - \frac{4 * {2}^{x}*0}{x^{3}(2)} + \frac{-2 * {2}^{x}ln^{2}(2)}{x^{3}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)}{x^{2}} + \frac{{2}^{x}*2ln(2)*0}{x^{2}(2)} + \frac{6*-4 * {2}^{x}}{x^{5}} + \frac{6({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x^{4}} - \frac{2*-3}{x^{4}} - \frac{6*-4}{x^{5}}\\=&\frac{18 * {2}^{x}ln(2)}{x^{4}} - \frac{6 * {2}^{x}ln^{2}(2)}{x^{3}} + \frac{{2}^{x}ln^{3}(2)}{x^{2}} - \frac{24 * {2}^{x}}{x^{5}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{18 * {2}^{x}ln(2)}{x^{4}} - \frac{6 * {2}^{x}ln^{2}(2)}{x^{3}} + \frac{{2}^{x}ln^{3}(2)}{x^{2}} - \frac{24 * {2}^{x}}{x^{5}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\right)}{dx}\\=&\frac{18*-4 * {2}^{x}ln(2)}{x^{5}} + \frac{18({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)}{x^{4}} + \frac{18 * {2}^{x}*0}{x^{4}(2)} - \frac{6*-3 * {2}^{x}ln^{2}(2)}{x^{4}} - \frac{6({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)}{x^{3}} - \frac{6 * {2}^{x}*2ln(2)*0}{x^{3}(2)} + \frac{-2 * {2}^{x}ln^{3}(2)}{x^{3}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2)}{x^{2}} + \frac{{2}^{x}*3ln^{2}(2)*0}{x^{2}(2)} - \frac{24*-5 * {2}^{x}}{x^{6}} - \frac{24({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x^{5}} + \frac{6*-4}{x^{5}} + \frac{24*-5}{x^{6}}\\=&\frac{-96 * {2}^{x}ln(2)}{x^{5}} + \frac{36 * {2}^{x}ln^{2}(2)}{x^{4}} - \frac{8 * {2}^{x}ln^{3}(2)}{x^{3}} + \frac{{2}^{x}ln^{4}(2)}{x^{2}} + \frac{120 * {2}^{x}}{x^{6}} - \frac{24}{x^{5}} - \frac{120}{x^{6}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return