There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(1 - xx) + \frac{(2xx)}{(xx - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-x^{2} + 1) + \frac{2x^{2}}{(x^{2} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-x^{2} + 1) + \frac{2x^{2}}{(x^{2} - 1)}\right)}{dx}\\=&\frac{(-2x + 0)}{(-x^{2} + 1)} + 2(\frac{-(2x + 0)}{(x^{2} - 1)^{2}})x^{2} + \frac{2*2x}{(x^{2} - 1)}\\=&\frac{-2x}{(-x^{2} + 1)} - \frac{4x^{3}}{(x^{2} - 1)^{2}} + \frac{4x}{(x^{2} - 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{(-x^{2} + 1)} - \frac{4x^{3}}{(x^{2} - 1)^{2}} + \frac{4x}{(x^{2} - 1)}\right)}{dx}\\=&-2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x - \frac{2}{(-x^{2} + 1)} - 4(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{3} - \frac{4*3x^{2}}{(x^{2} - 1)^{2}} + 4(\frac{-(2x + 0)}{(x^{2} - 1)^{2}})x + \frac{4}{(x^{2} - 1)}\\=&\frac{-4x^{2}}{(-x^{2} + 1)^{2}} + \frac{16x^{4}}{(x^{2} - 1)^{3}} - \frac{20x^{2}}{(x^{2} - 1)^{2}} - \frac{2}{(-x^{2} + 1)} + \frac{4}{(x^{2} - 1)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4x^{2}}{(-x^{2} + 1)^{2}} + \frac{16x^{4}}{(x^{2} - 1)^{3}} - \frac{20x^{2}}{(x^{2} - 1)^{2}} - \frac{2}{(-x^{2} + 1)} + \frac{4}{(x^{2} - 1)}\right)}{dx}\\=&-4(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x^{2} - \frac{4*2x}{(-x^{2} + 1)^{2}} + 16(\frac{-3(2x + 0)}{(x^{2} - 1)^{4}})x^{4} + \frac{16*4x^{3}}{(x^{2} - 1)^{3}} - 20(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{2} - \frac{20*2x}{(x^{2} - 1)^{2}} - 2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}}) + 4(\frac{-(2x + 0)}{(x^{2} - 1)^{2}})\\=&\frac{-16x^{3}}{(-x^{2} + 1)^{3}} - \frac{12x}{(-x^{2} + 1)^{2}} - \frac{96x^{5}}{(x^{2} - 1)^{4}} + \frac{144x^{3}}{(x^{2} - 1)^{3}} - \frac{48x}{(x^{2} - 1)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-16x^{3}}{(-x^{2} + 1)^{3}} - \frac{12x}{(-x^{2} + 1)^{2}} - \frac{96x^{5}}{(x^{2} - 1)^{4}} + \frac{144x^{3}}{(x^{2} - 1)^{3}} - \frac{48x}{(x^{2} - 1)^{2}}\right)}{dx}\\=&-16(\frac{-3(-2x + 0)}{(-x^{2} + 1)^{4}})x^{3} - \frac{16*3x^{2}}{(-x^{2} + 1)^{3}} - 12(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x - \frac{12}{(-x^{2} + 1)^{2}} - 96(\frac{-4(2x + 0)}{(x^{2} - 1)^{5}})x^{5} - \frac{96*5x^{4}}{(x^{2} - 1)^{4}} + 144(\frac{-3(2x + 0)}{(x^{2} - 1)^{4}})x^{3} + \frac{144*3x^{2}}{(x^{2} - 1)^{3}} - 48(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x - \frac{48}{(x^{2} - 1)^{2}}\\=&\frac{-96x^{4}}{(-x^{2} + 1)^{4}} - \frac{96x^{2}}{(-x^{2} + 1)^{3}} + \frac{768x^{6}}{(x^{2} - 1)^{5}} - \frac{1344x^{4}}{(x^{2} - 1)^{4}} + \frac{624x^{2}}{(x^{2} - 1)^{3}} - \frac{12}{(-x^{2} + 1)^{2}} - \frac{48}{(x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !