There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {n}^{2}{x}^{2}{(1 - x)}^{n} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = n^{2}x^{2}(-x + 1)^{n} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( n^{2}x^{2}(-x + 1)^{n} - 1\right)}{dx}\\=&n^{2}*2x(-x + 1)^{n} + n^{2}x^{2}((-x + 1)^{n}((0)ln(-x + 1) + \frac{(n)(-1 + 0)}{(-x + 1)})) + 0\\=&2n^{2}x(-x + 1)^{n} - \frac{n^{3}x^{2}(-x + 1)^{n}}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !