There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + 2)}^{{x}^{\frac{1}{2}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x + 2)^{{x}^{\frac{1}{2}}}\right)}{dx}\\=&((x + 2)^{{x}^{\frac{1}{2}}}((({x}^{\frac{1}{2}}((0)ln(x) + \frac{(\frac{1}{2})(1)}{(x)})))ln(x + 2) + \frac{({x}^{\frac{1}{2}})(1 + 0)}{(x + 2)}))\\=&\frac{(x + 2)^{x^{\frac{1}{2}}}ln(x + 2)}{2x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}(x + 2)^{x^{\frac{1}{2}}}}{(x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !