There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}{n}^{(2{n}^{2})}{(1 - x)}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{n}^{(2n^{2})}(-x + 1)^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{n}^{(2n^{2})}(-x + 1)^{n}\right)}{dx}\\=&2x{n}^{(2n^{2})}(-x + 1)^{n} + x^{2}({n}^{(2n^{2})}((0)ln(n) + \frac{(2n^{2})(0)}{(n)}))(-x + 1)^{n} + x^{2}{n}^{(2n^{2})}((-x + 1)^{n}((0)ln(-x + 1) + \frac{(n)(-1 + 0)}{(-x + 1)}))\\=&2x{n}^{(2n^{2})}(-x + 1)^{n} - \frac{nx^{2}(-x + 1)^{n}{n}^{(2n^{2})}}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !