There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(199 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(-x + 199)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(-x + 199)}\right)}{dx}\\=&({x}^{(-x + 199)}((-1 + 0)ln(x) + \frac{(-x + 199)(1)}{(x)}))\\=&-{x}^{(-x + 199)}ln(x) - {x}^{(-x + 199)} + \frac{199{x}^{(-x + 199)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !