There are 1 questions in this calculation: for each question, the 4 derivative of e is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e + e + e + {e}^{e}\ with\ respect\ to\ e:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3e + {e}^{e}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3e + {e}^{e}\right)}{de}\\=&3 + ({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))\\=&{e}^{e}ln(e) + {e}^{e} + 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{e}ln(e) + {e}^{e} + 3\right)}{de}\\=&({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln(e) + \frac{{e}^{e}}{(e)} + ({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)})) + 0\\=&{e}^{e}ln^{2}(e) + 2{e}^{e}ln(e) + \frac{{e}^{e}}{e} + {e}^{e}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {e}^{e}ln^{2}(e) + 2{e}^{e}ln(e) + \frac{{e}^{e}}{e} + {e}^{e}\right)}{de}\\=&({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln^{2}(e) + \frac{{e}^{e}*2ln(e)}{(e)} + 2({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln(e) + \frac{2{e}^{e}}{(e)} + \frac{-{e}^{e}}{e^{2}} + \frac{({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))}{e} + ({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))\\=&{e}^{e}ln^{3}(e) + 3{e}^{e}ln^{2}(e) + \frac{3{e}^{e}ln(e)}{e} + 3{e}^{e}ln(e) + \frac{3{e}^{e}}{e} - \frac{{e}^{e}}{e^{2}} + {e}^{e}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {e}^{e}ln^{3}(e) + 3{e}^{e}ln^{2}(e) + \frac{3{e}^{e}ln(e)}{e} + 3{e}^{e}ln(e) + \frac{3{e}^{e}}{e} - \frac{{e}^{e}}{e^{2}} + {e}^{e}\right)}{de}\\=&({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln^{3}(e) + \frac{{e}^{e}*3ln^{2}(e)}{(e)} + 3({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln^{2}(e) + \frac{3{e}^{e}*2ln(e)}{(e)} + \frac{3*-{e}^{e}ln(e)}{e^{2}} + \frac{3({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln(e)}{e} + \frac{3{e}^{e}}{e(e)} + 3({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))ln(e) + \frac{3{e}^{e}}{(e)} + \frac{3*-{e}^{e}}{e^{2}} + \frac{3({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))}{e} - \frac{-2{e}^{e}}{e^{3}} - \frac{({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))}{e^{2}} + ({e}^{e}((1)ln(e) + \frac{(e)(1)}{(e)}))\\=&{e}^{e}ln^{4}(e) + 4{e}^{e}ln^{3}(e) + \frac{6{e}^{e}ln^{2}(e)}{e} + 6{e}^{e}ln^{2}(e) + \frac{12{e}^{e}ln(e)}{e} - \frac{4{e}^{e}ln(e)}{e^{2}} + 4{e}^{e}ln(e) + \frac{6{e}^{e}}{e} + \frac{2{e}^{e}}{e^{3}} - \frac{{e}^{e}}{e^{2}} + {e}^{e}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !