There are 1 questions in this calculation: for each question, the 4 derivative of e is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e + e + eee\ with\ respect\ to\ e:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{3} + 2e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{3} + 2e\right)}{de}\\=&3e^{2} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3e^{2} + 2\right)}{de}\\=&3*2e + 0\\=&6e\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6e\right)}{de}\\=&6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6\right)}{de}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !