Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 0.0008 + \frac{0.7945}{(1 + e^{\frac{(9.808 - X)}{3.679}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.7945}{(e^{-0.271812992661X + 2.66594183201957} + 1)} + 0.0008\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.7945}{(e^{-0.271812992661X + 2.66594183201957} + 1)} + 0.0008\right)}{dx}\\=&0.7945(\frac{-(e^{-0.271812992661X + 2.66594183201957}(0 + 0) + 0)}{(e^{-0.271812992661X + 2.66594183201957} + 1)^{2}}) + 0\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return