There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.0125}{((1 - 0.5x)sqrt(1 - 0.5x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.0125}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.0125}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))}\right)}{dx}\\=&0.0125(\frac{-(\frac{(-0.5 + 0)*0.5}{(-0.5x + 1)^{\frac{1}{2}}} - 0.5sqrt(-0.5x + 1) - \frac{0.5x(-0.5 + 0)*0.5}{(-0.5x + 1)^{\frac{1}{2}}})}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))^{2}})\\=&\frac{-0.0015625x}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))(-0.5x + 1)^{\frac{1}{2}}} + \frac{0.00625sqrt(-0.5x + 1)}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))} + \frac{0.003125}{(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))(sqrt(-0.5x + 1) - 0.5xsqrt(-0.5x + 1))(-0.5x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !