Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x)cos(1923x - 34xx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)cos(-34x^{2} + 1923x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)cos(-34x^{2} + 1923x)\right)}{dx}\\=&cos(x)cos(-34x^{2} + 1923x) + sin(x)*-sin(-34x^{2} + 1923x)(-34*2x + 1923)\\=&cos(x)cos(-34x^{2} + 1923x) + 68xsin(-34x^{2} + 1923x)sin(x) - 1923sin(-34x^{2} + 1923x)sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return