There are 1 questions in this calculation: for each question, the 4 derivative of 2 is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{2} + log_{2}^{sin(2)}\ with\ respect\ to\ 2:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{2} + log_{2}^{sin(2)}\right)}{d2}\\=&e^{2}*0 + (\frac{(\frac{(cos(2)*0)}{(sin(2))} - \frac{(0)log_{2}^{sin(2)}}{(2)})}{(ln(2))})\\=& - \frac{0}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{0}{2}\right)}{d2}\\=& - 0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{d2}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{d2}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !