There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{(e^{-2}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(xe^{-2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(xe^{-2})}\right)}{dx}\\=&({x}^{(xe^{-2})}((e^{-2} + xe^{-2}*0)ln(x) + \frac{(xe^{-2})(1)}{(x)}))\\=&{x}^{(xe^{-2})}e^{-2}ln(x) + {x}^{(xe^{-2})}e^{-2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {x}^{(xe^{-2})}e^{-2}ln(x) + {x}^{(xe^{-2})}e^{-2}\right)}{dx}\\=&({x}^{(xe^{-2})}((e^{-2} + xe^{-2}*0)ln(x) + \frac{(xe^{-2})(1)}{(x)}))e^{-2}ln(x) + {x}^{(xe^{-2})}e^{-2}*0ln(x) + \frac{{x}^{(xe^{-2})}e^{-2}}{(x)} + ({x}^{(xe^{-2})}((e^{-2} + xe^{-2}*0)ln(x) + \frac{(xe^{-2})(1)}{(x)}))e^{-2} + {x}^{(xe^{-2})}e^{-2}*0\\=&{x}^{(xe^{-2})}e^{{-2}*{2}}ln^{2}(x) + 2{x}^{(xe^{-2})}e^{{-2}*{2}}ln(x) + \frac{{x}^{(xe^{-2})}e^{-2}}{x} + {x}^{(xe^{-2})}e^{{-2}*{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !