There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{18ln(1 + \frac{0.02}{x})}{30} + \frac{12ln(1 - \frac{0.01}{x})}{30}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.6ln(\frac{0.02}{x} + 1) + 0.4ln(\frac{-0.01}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.6ln(\frac{0.02}{x} + 1) + 0.4ln(\frac{-0.01}{x} + 1)\right)}{dx}\\=&\frac{0.6(\frac{0.02*-1}{x^{2}} + 0)}{(\frac{0.02}{x} + 1)} + \frac{0.4(\frac{-0.01*-1}{x^{2}} + 0)}{(\frac{-0.01}{x} + 1)}\\=&\frac{-0.012}{(\frac{0.02}{x} + 1)x^{2}} + \frac{0.004}{(\frac{-0.01}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !