There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (3bb - 8ac)(3bbbb - 16(abbc - aacc - aabd + 4aaaf)) - 9{(bbb - 4abc + 8aad)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 448ba^{3}cd + 32b^{2}a^{2}c^{2} - 96b^{3}a^{2}d - 192b^{2}a^{3}f + 512a^{4}cf - 128a^{3}c^{3} - 576a^{4}d^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 448ba^{3}cd + 32b^{2}a^{2}c^{2} - 96b^{3}a^{2}d - 192b^{2}a^{3}f + 512a^{4}cf - 128a^{3}c^{3} - 576a^{4}d^{2}\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !