There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {n}^{(-({100}^{log_{2}^{n}}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {n}^{(-{100}^{log_{2}^{n}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {n}^{(-{100}^{log_{2}^{n}})}\right)}{dx}\\=&({n}^{(-{100}^{log_{2}^{n}})}((-({100}^{log_{2}^{n}}(((\frac{(\frac{(0)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))}))ln(100) + \frac{(log_{2}^{n})(0)}{(100)})))ln(n) + \frac{(-{100}^{log_{2}^{n}})(0)}{(n)}))\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !