There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{log_{2}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{log_{2}^{x}}\right)}{dx}\\=&({x}^{log_{2}^{x}}(((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))ln(x) + \frac{(log_{2}^{x})(1)}{(x)}))\\=&\frac{{x}^{log_{2}^{x}}ln(x)}{xln(2)} + \frac{{x}^{log_{2}^{x}}log_{2}^{x}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !