Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 0.1{(145000 + x)}^{0.9} + 0.9{(145000 - 0.111111x)}^{0.9} + \frac{x}{900}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.1(x + 145000)^{\frac{9}{10}} + 0.9(-0.111111x + 145000)^{\frac{9}{10}} + 0.00111111111111111x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.1(x + 145000)^{\frac{9}{10}} + 0.9(-0.111111x + 145000)^{\frac{9}{10}} + 0.00111111111111111x\right)}{dx}\\=&0.1(\frac{0.9(1 + 0)}{(x + 145000)^{\frac{1}{10}}}) + 0.9(\frac{0.9(-0.111111 + 0)}{(-0.111111x + 145000)^{\frac{1}{10}}}) + 0.00111111111111111\\=&\frac{0.09}{(x + 145000)^{\frac{1}{10}}} - \frac{0.08999991}{(-0.111111x + 145000)^{\frac{1}{10}}} + 0.00111111111111111\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return