There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (xx - 1)(xx - 2)(xx - 3)(xx - 4)(xx - 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{10} - 15x^{8} + 85x^{6} - 225x^{4} + 274x^{2} - 120\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{10} - 15x^{8} + 85x^{6} - 225x^{4} + 274x^{2} - 120\right)}{dx}\\=&10x^{9} - 15*8x^{7} + 85*6x^{5} - 225*4x^{3} + 274*2x + 0\\=&10x^{9} - 120x^{7} + 510x^{5} - 900x^{3} + 548x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 10x^{9} - 120x^{7} + 510x^{5} - 900x^{3} + 548x\right)}{dx}\\=&10*9x^{8} - 120*7x^{6} + 510*5x^{4} - 900*3x^{2} + 548\\=&90x^{8} - 840x^{6} + 2550x^{4} - 2700x^{2} + 548\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 90x^{8} - 840x^{6} + 2550x^{4} - 2700x^{2} + 548\right)}{dx}\\=&90*8x^{7} - 840*6x^{5} + 2550*4x^{3} - 2700*2x + 0\\=&720x^{7} - 5040x^{5} + 10200x^{3} - 5400x\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 720x^{7} - 5040x^{5} + 10200x^{3} - 5400x\right)}{dx}\\=&720*7x^{6} - 5040*5x^{4} + 10200*3x^{2} - 5400\\=&5040x^{6} - 25200x^{4} + 30600x^{2} - 5400\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !