There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5{({t}^{4} - 2t)}^{3}i + ({({t}^{4} - 2t)}^{2} - 6)j - 7k\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5it^{12} - 30it^{9} + 60it^{6} - 40it^{3} + jt^{8} - 4jt^{5} + 4jt^{2} - 6j - 7k\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5it^{12} - 30it^{9} + 60it^{6} - 40it^{3} + jt^{8} - 4jt^{5} + 4jt^{2} - 6j - 7k\right)}{dt}\\=&5i*12t^{11} - 30i*9t^{8} + 60i*6t^{5} - 40i*3t^{2} + j*8t^{7} - 4j*5t^{4} + 4j*2t + 0 + 0\\=&60it^{11} - 270it^{8} + 360it^{5} - 120it^{2} + 8jt^{7} - 20jt^{4} + 8jt\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !