Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ tan(cos(2x - 2 + x(sin(3x - 5tan(x)))))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan(cos(xsin(3x - 5tan(x)) + 2x - 2))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(cos(xsin(3x - 5tan(x)) + 2x - 2))\right)}{dx}\\=&sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2))(-sin(xsin(3x - 5tan(x)) + 2x - 2)(sin(3x - 5tan(x)) + xcos(3x - 5tan(x))(3 - 5sec^{2}(x)(1)) + 2 + 0))\\=&-sin(3x - 5tan(x))sin(xsin(3x - 5tan(x)) + 2x - 2)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) + 5xsin(xsin(3x - 5tan(x)) + 2x - 2)cos(3x - 5tan(x))sec^{2}(x)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) - 3xsin(xsin(3x - 5tan(x)) + 2x - 2)cos(3x - 5tan(x))sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) - 2sin(xsin(3x - 5tan(x)) + 2x - 2)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2))\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return