There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (8 - 5x){\frac{1}{(400 + 400xx - 656x)}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{5x}{(400x^{2} - 656x + 400)^{\frac{1}{2}}} + \frac{8}{(400x^{2} - 656x + 400)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{5x}{(400x^{2} - 656x + 400)^{\frac{1}{2}}} + \frac{8}{(400x^{2} - 656x + 400)^{\frac{1}{2}}}\right)}{dx}\\=& - 5(\frac{\frac{-1}{2}(400*2x - 656 + 0)}{(400x^{2} - 656x + 400)^{\frac{3}{2}}})x - \frac{5}{(400x^{2} - 656x + 400)^{\frac{1}{2}}} + 8(\frac{\frac{-1}{2}(400*2x - 656 + 0)}{(400x^{2} - 656x + 400)^{\frac{3}{2}}})\\=&\frac{2000x^{2}}{(400x^{2} - 656x + 400)^{\frac{3}{2}}} - \frac{4840x}{(400x^{2} - 656x + 400)^{\frac{3}{2}}} - \frac{5}{(400x^{2} - 656x + 400)^{\frac{1}{2}}} + \frac{2624}{(400x^{2} - 656x + 400)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !