There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{π}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{π}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{π}^{x}}{(π)})}{(ln(π))})\\=&\frac{1}{xln(π)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln(π)}\right)}{dx}\\=&\frac{-1}{x^{2}ln(π)} + \frac{-0}{xln^{2}(π)(π)}\\=&\frac{-1}{x^{2}ln(π)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln(π)}\right)}{dx}\\=&\frac{--2}{x^{3}ln(π)} - \frac{-0}{x^{2}ln^{2}(π)(π)}\\=&\frac{2}{x^{3}ln(π)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln(π)}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(π)} + \frac{2*-0}{x^{3}ln^{2}(π)(π)}\\=&\frac{-6}{x^{4}ln(π)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !