Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ln(x))({e}^{x} - 2x) - (e^{1} - 1)(x - 1)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}ln(x) - 2xln(x) - x^{2}e^{1} + xe^{1} + x^{2} - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}ln(x) - 2xln(x) - x^{2}e^{1} + xe^{1} + x^{2} - x\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x) + \frac{{e}^{x}}{(x)} - 2ln(x) - \frac{2x}{(x)} - 2xe^{1} - x^{2}e^{1}*0 + e^{1} + xe^{1}*0 + 2x - 1\\=&{e}^{x}ln(x) + \frac{{e}^{x}}{x} - 2ln(x) - 2xe^{1} + e^{1} + 2x - 3\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return