Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{ax} + xx - ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{ax} + x^{2} - ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{ax} + x^{2} - ax\right)}{dx}\\=&e^{ax}a + 2x - a\\=&ae^{ax} + 2x - a\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ae^{ax} + 2x - a\right)}{dx}\\=&ae^{ax}a + 2 + 0\\=&a^{2}e^{ax} + 2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( a^{2}e^{ax} + 2\right)}{dx}\\=&a^{2}e^{ax}a + 0\\=&a^{3}e^{ax}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( a^{3}e^{ax}\right)}{dx}\\=&a^{3}e^{ax}a\\=&a^{4}e^{ax}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return