There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sin(wx + r)A + B\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Asin(wx + r) + B\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Asin(wx + r) + B\right)}{dx}\\=&Acos(wx + r)(w + 0) + 0\\=&wAcos(wx + r)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( wAcos(wx + r)\right)}{dx}\\=&wA*-sin(wx + r)(w + 0)\\=&-w^{2}Asin(wx + r)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -w^{2}Asin(wx + r)\right)}{dx}\\=&-w^{2}Acos(wx + r)(w + 0)\\=&-w^{3}Acos(wx + r)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -w^{3}Acos(wx + r)\right)}{dx}\\=&-w^{3}A*-sin(wx + r)(w + 0)\\=&w^{4}Asin(wx + r)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !