Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of n is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (si)n(se^{v}e^{n}te^{e^{n}})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = s^{2}itne^{n}e^{v}e^{e^{n}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( s^{2}itne^{n}e^{v}e^{e^{n}}\right)}{dn}\\=&s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}*0e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}}e^{n}\\=&s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v}\right)}{dn}\\=&s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}ite^{n}e^{v}*0e^{e^{n}} + s^{2}ite^{n}e^{v}e^{e^{n}}e^{n} + s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}*0e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}}e^{n} + s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}e^{n}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}*2e^{n}e^{n}e^{v} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v}*0\\=&2s^{2}ite^{n}e^{v}e^{e^{n}} + 2s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v} + 2s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2s^{2}ite^{n}e^{v}e^{e^{n}} + 2s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v} + 2s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v}\right)}{dn}\\=&2s^{2}ite^{n}e^{v}e^{e^{n}} + 2s^{2}ite^{n}e^{v}*0e^{e^{n}} + 2s^{2}ite^{n}e^{v}e^{e^{n}}e^{n} + 2s^{2}ite^{e^{n}}e^{n}e^{{n}*{2}}e^{v} + 2s^{2}ite^{e^{n}}*2e^{n}e^{n}e^{v} + 2s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v}*0 + s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}*0e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}}e^{n} + s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}e^{n}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}*2e^{n}e^{n}e^{v} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v}*0 + s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v} + s^{2}itn*3e^{{n}*{2}}e^{n}e^{e^{n}}e^{v} + s^{2}itne^{{n}*{3}}e^{e^{n}}e^{n}e^{v} + s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v}*0 + 2s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v} + 2s^{2}itn*2e^{n}e^{n}e^{e^{n}}e^{v} + 2s^{2}itne^{{n}*{2}}e^{e^{n}}e^{n}e^{v} + 2s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v}*0\\=&3s^{2}ite^{n}e^{v}e^{e^{n}} + 3s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + 3s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v} + 6s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v} + 6s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v} + 6s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v} + s^{2}itne^{{n}*{4}}e^{e^{n}}e^{v}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 3s^{2}ite^{n}e^{v}e^{e^{n}} + 3s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + 3s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v} + 6s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v} + 6s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v} + 6s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v} + s^{2}itne^{{n}*{4}}e^{e^{n}}e^{v}\right)}{dn}\\=&3s^{2}ite^{n}e^{v}e^{e^{n}} + 3s^{2}ite^{n}e^{v}*0e^{e^{n}} + 3s^{2}ite^{n}e^{v}e^{e^{n}}e^{n} + 3s^{2}ite^{e^{n}}e^{n}e^{{n}*{2}}e^{v} + 3s^{2}ite^{e^{n}}*2e^{n}e^{n}e^{v} + 3s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v}*0 + 3s^{2}it*3e^{{n}*{2}}e^{n}e^{e^{n}}e^{v} + 3s^{2}ite^{{n}*{3}}e^{e^{n}}e^{n}e^{v} + 3s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v}*0 + 6s^{2}it*2e^{n}e^{n}e^{e^{n}}e^{v} + 6s^{2}ite^{{n}*{2}}e^{e^{n}}e^{n}e^{v} + 6s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v}*0 + s^{2}ite^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{n}e^{v}*0e^{e^{n}} + s^{2}itne^{n}e^{v}e^{e^{n}}e^{n} + s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}e^{n}e^{{n}*{2}}e^{v} + s^{2}itne^{e^{n}}*2e^{n}e^{n}e^{v} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v}*0 + 6s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v} + 6s^{2}itn*3e^{{n}*{2}}e^{n}e^{e^{n}}e^{v} + 6s^{2}itne^{{n}*{3}}e^{e^{n}}e^{n}e^{v} + 6s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v}*0 + 6s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v} + 6s^{2}itn*2e^{n}e^{n}e^{e^{n}}e^{v} + 6s^{2}itne^{{n}*{2}}e^{e^{n}}e^{n}e^{v} + 6s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v}*0 + s^{2}ite^{{n}*{4}}e^{e^{n}}e^{v} + s^{2}itn*4e^{{n}*{3}}e^{n}e^{e^{n}}e^{v} + s^{2}itne^{{n}*{4}}e^{e^{n}}e^{n}e^{v} + s^{2}itne^{{n}*{4}}e^{e^{n}}e^{v}*0\\=&4s^{2}ite^{n}e^{v}e^{e^{n}} + 4s^{2}ite^{e^{n}}e^{{n}*{2}}e^{v} + 24s^{2}ite^{{n}*{3}}e^{e^{n}}e^{v} + 24s^{2}ite^{{n}*{2}}e^{e^{n}}e^{v} + 4s^{2}ite^{{n}*{4}}e^{e^{n}}e^{v} + s^{2}itne^{n}e^{v}e^{e^{n}} + s^{2}itne^{e^{n}}e^{{n}*{2}}e^{v} + 25s^{2}itne^{{n}*{3}}e^{e^{n}}e^{v} + 14s^{2}itne^{{n}*{2}}e^{e^{n}}e^{v} + 10s^{2}itne^{{n}*{4}}e^{e^{n}}e^{v} + s^{2}itne^{{n}*{5}}e^{e^{n}}e^{v}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return