There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{(e^{x} - e^{-x})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{x} - \frac{e^{-x}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{x} - \frac{e^{-x}}{x}\right)}{dx}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x} - \frac{-e^{-x}}{x^{2}} - \frac{e^{-x}*-1}{x}\\=&\frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x} + \frac{e^{-x}}{x^{2}} + \frac{e^{-x}}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x} + \frac{e^{-x}}{x^{2}} + \frac{e^{-x}}{x}\right)}{dx}\\=&\frac{--2e^{x}}{x^{3}} - \frac{e^{x}}{x^{2}} + \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x} + \frac{-2e^{-x}}{x^{3}} + \frac{e^{-x}*-1}{x^{2}} + \frac{-e^{-x}}{x^{2}} + \frac{e^{-x}*-1}{x}\\=&\frac{2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{e^{x}}{x} - \frac{2e^{-x}}{x^{3}} - \frac{2e^{-x}}{x^{2}} - \frac{e^{-x}}{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{e^{x}}{x} - \frac{2e^{-x}}{x^{3}} - \frac{2e^{-x}}{x^{2}} - \frac{e^{-x}}{x}\right)}{dx}\\=&\frac{2*-3e^{x}}{x^{4}} + \frac{2e^{x}}{x^{3}} - \frac{2*-2e^{x}}{x^{3}} - \frac{2e^{x}}{x^{2}} + \frac{-e^{x}}{x^{2}} + \frac{e^{x}}{x} - \frac{2*-3e^{-x}}{x^{4}} - \frac{2e^{-x}*-1}{x^{3}} - \frac{2*-2e^{-x}}{x^{3}} - \frac{2e^{-x}*-1}{x^{2}} - \frac{-e^{-x}}{x^{2}} - \frac{e^{-x}*-1}{x}\\=&\frac{-6e^{x}}{x^{4}} + \frac{6e^{x}}{x^{3}} - \frac{3e^{x}}{x^{2}} + \frac{e^{x}}{x} + \frac{6e^{-x}}{x^{4}} + \frac{6e^{-x}}{x^{3}} + \frac{3e^{-x}}{x^{2}} + \frac{e^{-x}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !