Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{e^{x}}{cos(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{cos(x)}\right)}{dx}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)}\right)}{dx}\\=&\frac{e^{x}}{cos(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)} + \frac{e^{x}sin(x)}{cos^{2}(x)} + \frac{e^{x}cos(x)}{cos^{2}(x)} + \frac{e^{x}sin(x)*2sin(x)}{cos^{3}(x)}\\=&\frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)}\right)}{dx}\\=&\frac{2e^{x}}{cos(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}sin(x)}{cos^{2}(x)} + \frac{2e^{x}cos(x)}{cos^{2}(x)} + \frac{2e^{x}sin(x)*2sin(x)}{cos^{3}(x)} + \frac{2e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{2e^{x}*2sin(x)cos(x)}{cos^{3}(x)} + \frac{2e^{x}sin^{2}(x)*3sin(x)}{cos^{4}(x)}\\=&\frac{4e^{x}}{cos(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{4e^{x}}{cos(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)}\right)}{dx}\\=&\frac{4e^{x}}{cos(x)} + \frac{4e^{x}sin(x)}{cos^{2}(x)} + \frac{8e^{x}sin(x)}{cos^{2}(x)} + \frac{8e^{x}cos(x)}{cos^{2}(x)} + \frac{8e^{x}sin(x)*2sin(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{6e^{x}*2sin(x)cos(x)}{cos^{3}(x)} + \frac{6e^{x}sin^{2}(x)*3sin(x)}{cos^{4}(x)} + \frac{6e^{x}sin^{3}(x)}{cos^{4}(x)} + \frac{6e^{x}*3sin^{2}(x)cos(x)}{cos^{4}(x)} + \frac{6e^{x}sin^{3}(x)*4sin(x)}{cos^{5}(x)}\\=&\frac{12e^{x}}{cos(x)} + \frac{24e^{x}sin(x)}{cos^{2}(x)} + \frac{40e^{x}sin^{2}(x)}{cos^{3}(x)} + \frac{24e^{x}sin^{3}(x)}{cos^{4}(x)} + \frac{24e^{x}sin^{4}(x)}{cos^{5}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return