There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + \frac{x}{n})}^{n} - {e}^{x}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{x}{n} + 1)^{n} - {e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{x}{n} + 1)^{n} - {e}^{x}\right)}{dn}\\=&((\frac{x}{n} + 1)^{n}((1)ln(\frac{x}{n} + 1) + \frac{(n)(\frac{x*-1}{n^{2}} + 0)}{(\frac{x}{n} + 1)})) - ({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)}))\\=&(\frac{x}{n} + 1)^{n}ln(\frac{x}{n} + 1) - \frac{x(\frac{x}{n} + 1)^{n}}{(\frac{x}{n} + 1)n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !