Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of q is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 22q - (\frac{{q}^{3}}{48} - \frac{{q}^{2}}{4} + 12q + 18)\ with\ respect\ to\ q:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10q - \frac{1}{48}q^{3} + \frac{1}{4}q^{2} - 18\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10q - \frac{1}{48}q^{3} + \frac{1}{4}q^{2} - 18\right)}{dq}\\=&10 - \frac{1}{48}*3q^{2} + \frac{1}{4}*2q + 0\\=& - \frac{q^{2}}{16} + \frac{q}{2} + 10\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return